Loading [MathJax]/extensions/MathZoom.js
In this paper we deal with the of an -algebra , where and are nonzero cardinals. It is proved that if is singular and -distributive, then it is . We show that if is complete then it can be represented as a direct product of -algebras which are homogeneous with respect to higher degrees of distributivity.
We give two variations of the Holland representation theorem for -groups and of its generalization of Glass for directed interpolation po-groups as groups of automorphisms of a linearly ordered set or of an antilattice, respectively. We show that every pseudo-effect algebra with some kind of the Riesz decomposition property as well as any pseudo -algebra can be represented as a pseudo-effect algebra or as a pseudo -algebra of automorphisms of some antilattice or of some linearly ordered set.
The variety of basic algebras is closed under formation of horizontal sums. We characterize when a given basic algebra is a horizontal sum of chains, MV-algebras or Boolean algebras.
It is shown how Lawvere's one-to-one translation between Birkhoff's description of varieties and the categorical one (see [6]) turns Hu's theorem on varieties generated by a primal algebra (see [4], [5]) into a simple reformulation of the classical representation theorem of finite Boolean algebras as powerset algebras.
Currently displaying 1 –
4 of
4