Loading [MathJax]/extensions/MathZoom.js
Some properties of Boolean algebras are characterized through the topological properties of a certain space of countable sequences of ordinals. For this, it is necessary to prove the Ramsey theorems for an arbitrary infinite cardinal. Also, we define continuous mappings on these spaces from vector measures on the algebra.
SC, CA, QA and QEA stand for the classes of Pinter's substitution algebras, Tarski's cylindric algebras, Halmos' quasipolyadic algebras and Halmos' quasipolyadic algebras with equality, respectively. Generalizing a result of Andréka and Németi on cylindric algebras, we show that for K ∈ SC,QA,CA,QEA and any β > 2 the class of 2-dimensional neat reducts of β-dimensional algebras in K is not closed under forming elementary subalgebras, hence is not elementary. Whether this result extends to higher...
Let G be a group and P G be the Boolean algebra of all subsets of G. A mapping Δ: P G → P G defined by Δ(A) = {g ∈ G: gA ∩ A is infinite} is called the combinatorial derivation. The mapping Δ can be considered as an analogue of the topological derivation d: P X→ P X, A ↦ A d, where X is a topological space and A d is the set of all limit points of A. We study the behaviour of subsets of G under action of Δ and its inverse mapping ∇. For example, we show that if G is infinite and I is an ideal in...
Generalizing [ShSp], for every n < ω we construct a ZFC-model where ℌ(n), the distributivity number of r.o., is greater than ℌ(n+1). This answers an old problem of Balcar, Pelant and Simon (see [BaPeSi]). We also show that both Laver and Miller forcings collapse the continuum to ℌ(n) for every n < ω, hence by the first result, consistently they collapse it below ℌ(n).
Two Boolean algebras are elementarily equivalent if and only if they satisfy the same first-order statements in the language of Boolean algebras. We prove that every Boolean algebra is elementarily equivalent to the algebra of clopen subsets of a normal P-space.
Let τ: F → N be a type of algebras, where F is a set of fundamental operation symbols and N is the set of all positive integers. An identity φ ≈ ψ is called biregular if it has the same variables in each of it sides and it has the same fundamental operation symbols in each of it sides. For a variety V of type τ we denote by the biregularization of V, i.e. the variety of type τ defined by all biregular identities from Id(V). Let B be the variety of Boolean algebras of type , where and . In...
The Open Colouring Axiom implies that the measure algebra cannot be embedded into P(ℕ)/fin. We also discuss errors in previous results on the embeddability of the measure algebra.
We study local interpolation properties and local supremum properties for a Boolean algebra. In particular, we present a new condition that is sufficient for the Nikodym property.
There is a conjecture of Vaught [17] which states: Without The Generalized Continuum Hypothesis one can prove the existence of a complete theory with exactly nonisomorphic, denumerable models. In this paper we show that there is no such theory in the class of complete extensions of the theory of Boolean algebras. More precisely, any complete extension of the theory of Boolean algebras has either 1 or nonisomorphic, countable models. Thus we answer this conjecture in the negative for any complete...
We study unitary rings of characteristic 2 satisfying identity for some natural number p. We characterize several infinite families of these rings which are Boolean, i.e., every element is idempotent. For example, it is in the case if or or for a suitable natural number n. Some other (more general) cases are solved for p expressed in the form or where q is a natural number and .
It is well known that to every Boolean ring can be assigned a Boolean algebra whose operations are term operations of . Then a symmetric difference of together with the meet operation recover the original ring operations of . The aim of this paper is to show for what a ring a similar construction is possible. Of course, we do not construct a Boolean algebra but only so-called lattice-like structure which was introduced and treated by the authors in a previous paper. In particular, we reached...
We investigate the sequential topology on a complete Boolean algebra B determined by algebraically convergent sequences in B. We show the role of weak distributivity of B in separation axioms for the sequential topology. The main result is that a necessary and sufficient condition for B to carry a strictly positive Maharam submeasure is that B is ccc and that the space is Hausdorff. We also characterize sequential cardinals.
Currently displaying 1 –
20 of
30