Images homomorphes, ordonnées en treillis des demi-groupes ordonnés
We investigate the logical systems which result from introducing the modalities L and M into the family of substructural implication logics (including relevant, linear and intuitionistic implication). Our results lead to the formulation of a uniform labelled refutation system for these logics.
Topological Boolean algebras are generalizations of topological spaces defined by means of topological closure and interior operators, respectively. The authors in [14] generalized topological Boolean algebras to closure and interior operators of MV-algebras which are an algebraic counterpart of the Łukasiewicz infinite valued logic. In the paper, these kinds of operators are extended (and investigated) to the wide class of bounded commutative Rl-monoids that contains e.g. the classes of BL-algebras...
Bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate multiplicative interior and additive closure operators (mi- and ac-operators) generalizing topological interior and closure operators on such algebras. We describe connections between mi- and ac-operators, and for residuated lattices with Glivenko property we give connections between operators on them and on the residuated...
-algebras endowed with additive closure operators or with its duals-multiplicative interior operators (closure or interior -algebras) were introduced as a non-commutative generalization of topological Boolean algebras. In the paper, the multiplicative interior and additive closure operators on -monoids are introduced as natural generalizations of the multiplicative interior and additive closure operators on -algebras.
Commutative bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate additive closure and multiplicative interior operators on this class of algebras.
We generalize the concept of an integral residuated lattice to join-semilattices with an upper bound where every principal order-filter (section) is a residuated semilattice; such a structure is called a sectionally residuated semilattice. Natural examples come from propositional logic. For instance, implication algebras (also known as Tarski algebras), which are the algebraic models of the implication fragment of the classical logic, are sectionally residuated semilattices such that every section...
In this paper we investigate prime divisors, -primes and -primes in -lattices. Using them some new characterizations are given for compactly packed lattices. Next, we study Noetherian lattices and Laskerian lattices and characterize Laskerian lattices in terms of compactly packed lattices.
Dually residuated lattice ordered monoids (-monoids) are common generalizations of, e.g., lattice ordered groups, Brouwerian algebras and algebras of logics behind fuzzy reasonings (-algebras, -algebras) and their non-commutative variants (-algebras, pseudo -algebras). In the paper, lex-extensions and lex-ideals of -monoids (which need not be commutative or bounded) satisfying a certain natural condition are studied.
In this paper we prove for an hl-loop an assertion analogous to the result of Jakubík concerning lexicographic products of half linearly ordered groups. We found conditions under which any two lexicographic product decompositions of an hl-loop with a finite number of lexicographic factors have isomorphic refinements.