Displaying 121 – 140 of 366

Showing per page

Information frames, implication systems and modalities.

Marcello D'Agostino, Dov M. Gabbay, Alessandra Russo (1996)

Mathware and Soft Computing

We investigate the logical systems which result from introducing the modalities L and M into the family of substructural implication logics (including relevant, linear and intuitionistic implication). Our results lead to the formulation of a uniform labelled refutation system for these logics.

Interior and closure operators on bounded commutative residuated l-monoids

Jiří Rachůnek, Filip Švrček (2008)

Discussiones Mathematicae - General Algebra and Applications

Topological Boolean algebras are generalizations of topological spaces defined by means of topological closure and interior operators, respectively. The authors in [14] generalized topological Boolean algebras to closure and interior operators of MV-algebras which are an algebraic counterpart of the Łukasiewicz infinite valued logic. In the paper, these kinds of operators are extended (and investigated) to the wide class of bounded commutative Rl-monoids that contains e.g. the classes of BL-algebras...

Interior and closure operators on bounded residuated lattices

Jiří Rachůnek, Zdeněk Svoboda (2014)

Open Mathematics

Bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate multiplicative interior and additive closure operators (mi- and ac-operators) generalizing topological interior and closure operators on such algebras. We describe connections between mi- and ac-operators, and for residuated lattices with Glivenko property we give connections between operators on them and on the residuated...

Interior and closure operators on bounded residuated lattice ordered monoids

Filip Švrček (2008)

Czechoslovak Mathematical Journal

G M V -algebras endowed with additive closure operators or with its duals-multiplicative interior operators (closure or interior G M V -algebras) were introduced as a non-commutative generalization of topological Boolean algebras. In the paper, the multiplicative interior and additive closure operators on D R l -monoids are introduced as natural generalizations of the multiplicative interior and additive closure operators on G M V -algebras.

Interior and Closure Operators on Commutative Bounded Residuated Lattices

Jiří Rachůnek, Zdeněk Svoboda (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Commutative bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate additive closure and multiplicative interior operators on this class of algebras.

Join-semilattices whose sections are residuated po-monoids

Ivan Chajda, Jan Kühr (2008)

Czechoslovak Mathematical Journal

We generalize the concept of an integral residuated lattice to join-semilattices with an upper bound where every principal order-filter (section) is a residuated semilattice; such a structure is called a sectionally residuated semilattice. Natural examples come from propositional logic. For instance, implication algebras (also known as Tarski algebras), which are the algebraic models of the implication fragment of the classical logic, are sectionally residuated semilattices such that every section...

Laskerian lattices

C. Jayaram (2003)

Czechoslovak Mathematical Journal

In this paper we investigate prime divisors, B w -primes and z s -primes in C -lattices. Using them some new characterizations are given for compactly packed lattices. Next, we study Noetherian lattices and Laskerian lattices and characterize Laskerian lattices in terms of compactly packed lattices.

Lexicographic extensions of dually residuated lattice ordered monoids

Jiří Rachůnek, Dana Šalounová (2004)

Mathematica Bohemica

Dually residuated lattice ordered monoids ( D R -monoids) are common generalizations of, e.g., lattice ordered groups, Brouwerian algebras and algebras of logics behind fuzzy reasonings ( M V -algebras, B L -algebras) and their non-commutative variants ( G M V -algebras, pseudo B L -algebras). In the paper, lex-extensions and lex-ideals of D R -monoids (which need not be commutative or bounded) satisfying a certain natural condition are studied.

Lexicographic product decompositions of half linearly ordered loops

Milan Demko (2007)

Czechoslovak Mathematical Journal

In this paper we prove for an hl-loop Q an assertion analogous to the result of Jakubík concerning lexicographic products of half linearly ordered groups. We found conditions under which any two lexicographic product decompositions of an hl-loop Q with a finite number of lexicographic factors have isomorphic refinements.

Currently displaying 121 – 140 of 366