Page 1

Displaying 1 – 14 of 14

Showing per page

Certain partial orders on semigroups

Mario Petrich (2001)

Czechoslovak Mathematical Journal

Relations introduced by Conrad, Drazin, Hartwig, Mitsch and Nambooripad are discussed on general, regular, completely semisimple and completely regular semigroups. Special properties of these relations as well as possible coincidence of some of them are investigated in some detail. The properties considered are mainly those of being a partial order or compatibility with multiplication. Coincidences of some of these relations are studied mainly on regular and completely regular semigroups.

Classes of filters in generalizations of commutative fuzzy structures

Jiří Rachůnek, Dana Šalounová (2009)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Bounded commutative residuated lattice ordered monoids ( R -monoids) are a common generalization of 𝐵𝐿 -algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative R -monoids.

Classes of fuzzy filters of residuated lattice ordered monoids

Jiří Rachůnek, Dana Šalounová (2010)

Mathematica Bohemica

The logical foundations of processes handling uncertainty in information use some classes of algebras as algebraic semantics. Bounded residuated lattice ordered monoids (monoids) are common generalizations of BL -algebras, i.e., algebras of the propositional basic fuzzy logic, and Heyting algebras, i.e., algebras of the propositional intuitionistic logic. From the point of view of uncertain information, sets of provable formulas in inference systems could be described by fuzzy filters of the corresponding...

Complex calculus of variations

Michel Gondran, Rita Hoblos Saade (2003)

Kybernetika

In this article, we present a detailed study of the complex calculus of variations introduced in [M. Gondran: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I]. This calculus is analogous to the conventional calculus of variations, but is applied here to 𝐂 n functions in 𝐂 . It is based on new concepts involving the minimum and convexity of a complex function. Such an approach allows us to propose explicit solutions...

Conditions for strong Morita equivalence of partially ordered semigroups

Lauri Tart (2011)

Open Mathematics

We investigate when a partially ordered semigroup (with various types of local units) is strongly Morita equivalent to a posemigroup from a given class of partially ordered semigroups. Necessary and sufficient conditions for such equivalence are obtained for a series of well-known classes of posemigroups. A number of sufficient conditions for several classes of naturally ordered posemigroups are also provided.

Continuous extension of order-preserving homogeneous maps

Andrew D. Burbanks, Colin T. Sparrow, Roger D. Nussbaum (2003)

Kybernetika

Maps f defined on the interior of the standard non-negative cone K in N which are both homogeneous of degree 1 and order-preserving arise naturally in the study of certain classes of Discrete Event Systems. Such maps are non-expanding in Thompson’s part metric and continuous on the interior of the cone. It follows from more general results presented here that all such maps have a homogeneous order-preserving continuous extension to the whole cone. It follows that the extension must have at least...

Currently displaying 1 – 14 of 14

Page 1