Metric properties of positively ordered monoids.
In this survey paper some recent results on the minimality problem for positive realizations are discussed. In particular, it is firstly shown, by means of some examples, that the minimal dimension of a positive realization of a given transfer function, may be much “larger” than its McMillan degree. Then, necessary and sufficient conditions for the minimality of a given positive realization in terms of positive factorization of the Hankel matrix are given. Finally, necessary and sufficient conditions...
Bounded residuated lattice ordered monoids (-monoids) form a class of algebras which contains the class of Heyting algebras, i.e. algebras of the propositional intuitionistic logic, as well as the classes of algebras of important propositional fuzzy logics such as pseudo -algebras (or, equivalently, -algebras) and pseudo -algebras (and so, particularly, -algebras and -algebras). Modal operators on Heyting algebras were studied by Macnab (1981), on -algebras were studied by Harlenderová and...
Modal operators on Heyting algebras were introduced by Macnab. In this paper we introduce analogously modal operators on MV-algebras and study their properties. Moreover, modal operators on certain derived structures are investigated.
This paper presents a modeling methodology in (max,+) algebra which has been developed in order to implement a modulary software for the simulation and the analysis of electronic cards production lines. More generally, this approach may be applied to hybrid flowshop type manufacturing systems.
Bounded integral residuated lattices form a large class of algebras containing some classes of commutative and noncommutative algebras behind many-valued and fuzzy logics. In the paper, monotone modal operators (special cases of closure operators) are introduced and studied.
In the paper it is proved that the category of -algebras is equivalent to the category of bounded -semigroups satisfying the identity . Consequently, by a result of D. Mundici, both categories are equivalent to the category of bounded commutative -algebras.