Displaying 61 – 80 of 151

Showing per page

On Riesz homomorphisms in unital f -algebras

Elmiloud Chil (2009)

Mathematica Bohemica

The main topic of the first section of this paper is the following theorem: let A be an Archimedean f -algebra with unit element e , and T A A a Riesz homomorphism such that T 2 ( f ) = T ( f T ( e ) ) for all f A . Then every Riesz homomorphism extension T ˜ of T from the Dedekind completion A δ of A into itself satisfies T ˜ 2 ( f ) = T ˜ ( f T ( e ) ) for all f A δ . In the second section this result is applied in several directions. As a first application it is applied to show a result about extensions of positive projections to the Dedekind completion. A second application...

On spectral continuity of positive elements

S. Mouton (2006)

Studia Mathematica

Let x be a positive element of an ordered Banach algebra. We prove a relationship between the spectra of x and of certain positive elements y for which either xy ≤ yx or yx ≤ xy. Furthermore, we show that the spectral radius is continuous at x, considered as an element of the set of all positive elements y ≥ x such that either xy ≤ yx or yx ≤ xy. We also show that the property ϱ(x + y) ≤ ϱ(x) + ϱ(y) of the spectral radius ϱ can be obtained for positive elements y which satisfy at least one of the...

Order bounded orthosymmetric bilinear operator

Elmiloud Chil (2011)

Czechoslovak Mathematical Journal

It is proved by an order theoretical and purely algebraic method that any order bounded orthosymmetric bilinear operator b : E × E F where E and F are Archimedean vector lattices is symmetric. This leads to a new and short proof of the commutativity of Archimedean almost f -algebras.

Ordered fields and the ultrafilter theorem

R. Berr, Françoise Delon, J. Schmid (1999)

Fundamenta Mathematicae

We prove that on the basis of ZF the ultrafilter theorem and the theorem of Artin-Schreier are equivalent. The latter says that every formally real field admits a total order.

Orderings and preorderings in rings with involution

Ismail Idris (2000)

Colloquium Mathematicae

The notions of a preordering and an ordering of a ring R with involution are investigated. An algebraic condition for the existence of an ordering of R is given. Also, a condition for enlarging an ordering of R to an overring is given. As for the case of a field, any preordering of R can be extended to some ordering. Finally, we investigate the class of archimedean ordered rings with involution.

Orthosymmetric bilinear map on Riesz spaces

Elmiloud Chil, Mohamed Mokaddem, Bourokba Hassen (2015)

Commentationes Mathematicae Universitatis Carolinae

Let E be a Riesz space, F a Hausdorff topological vector space (t.v.s.). We prove, under a certain separation condition, that any orthosymmetric bilinear map T : E × E F is automatically symmetric. This generalizes in certain way an earlier result by F. Ben Amor [On orthosymmetric bilinear maps, Positivity 14 (2010), 123–134]. As an application, we show that under a certain separation condition, any orthogonally additive homogeneous polynomial P : E F is linearly represented. This fits in the type of results by...

Currently displaying 61 – 80 of 151