Page 1

Displaying 1 – 11 of 11

Showing per page

Banaschewski’s theorem for generalized M V -algebras

Ján Jakubík (2007)

Czechoslovak Mathematical Journal

A generalized M V -algebra 𝒜 is called representable if it is a subdirect product of linearly ordered generalized M V -algebras. Let S be the system of all congruence relations ρ on 𝒜 such that the quotient algebra 𝒜 / ρ is representable. In the present paper we prove that the system S has a least element.

Bases of minimal elements of some partially ordered free abelian groups

Pavel Příhoda (2003)

Commentationes Mathematicae Universitatis Carolinae

In the present paper, we will show that the set of minimal elements of a full affine semigroup A 0 k contains a free basis of the group generated by A in k . This will be applied to the study of the group K 0 ( R ) for a semilocal ring R .

Bell-type inequalities for parametric families of triangular norms

Saskia Janssens, Bernard De Baets, Hans De Meyer (2004)

Kybernetika

In recent work we have shown that the reformulation of the classical Bell inequalities into the context of fuzzy probability calculus leads to related inequalities on the commutative conjunctor used for modelling pointwise fuzzy set intersection. Also, an important role has been attributed to commutative quasi-copulas. In this paper, we consider these new Bell-type inequalities for continuous t-norms. Our contribution is twofold: first, we prove that ordinal sums preserve these Bell-type inequalities;...

Bi-ideals in Clifford ordered semigroup

Kalyan Hansda (2013)

Discussiones Mathematicae - General Algebra and Applications

In this paper we characterize both the Clifford and left Clifford ordered semigroups by their bi-ideals and quasi-ideals. Also we characterize principal bi-ideal generated by an ordered idempotent in a completely regular ordered semigroup.

Currently displaying 1 – 11 of 11

Page 1