Die Darstellung von partiellen -stelligen Operationen
We continue the study of directoid groups, directed abelian groups equipped with an extra binary operation which assigns an upper bound to each ordered pair subject to some natural restrictions. The class of all such structures can to some extent be viewed as an equationally defined substitute for the class of (2-torsion-free) directed abelian groups. We explore the relationship between the two associated categories, and some aspects of ideals of directoid groups.
We prove that an order algebra assigned to a bounded poset with involution is a discriminator algebra.
The theory of discriminator algebras and varieties has been investigated extensively, and provides us with a wealth of information and techniques applicable to specific examples of such algebras and varieties. Here we give several such examples for Boolean algebras with a residuated binary operator, abbreviated as r-algebras. More specifically, we show that all finite r-algebras, all integral r-algebras, all unital r-algebras with finitely many elements below the unit, and all commutative residuated...