On some correspondences between relational structures and algebras
There exists a natural extension of the notion of preorder from binary relations onto relations whose arities are arbitrary ordinals. In the article we find a condition under which extended preorders coincide with preorders if viewed categorically.
The notion of a TST-space is introduced and its connection with a parallelogram space is given. The existence of a TST-space is equivalent to the existence of a parallelogram space, which is a new characterization of a parallelogram space. The structure of a TST-space is described in terms of an abelian group.
In this paper the context of independent sets is assigned to the complete lattice (P(M),⊆) of all subsets of a non-empty set M. Some properties of this context, especially the irreducibility and the span, are investigated.
The category of all binary relations between arbitrary sets turns out to be a certain symmetric monoidal category Rel with an additional structure characterized by a family of diagonal morphisms, a family of terminal morphisms, and a family of diagonal inversions having certain properties. Using this properties in [11] was given a system of axioms which characterizes the abstract concept of a halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversions (hdht∇s-category)....
A projection of a relation is defined as a relation of reduced arity. The paper deals with projections of relations in coherence with their reflexivity, symmetry, completeness, regularity, cyclicity and other properties. Relationships between projections of hulls and hulls of projections are also studied.
Relational systems containing one binary relation are investigated. Quotient relational systems are introduced and some of their properties are characterized. Moreover, homomorphisms, strong mappings and cone preserving mappings are introduced and the interplay between these notions is considered. Finally, the connection between directed relational systems and corresponding groupoids is investigated.