On the homology theory of categories. II.
Let S be a semiring whose additive reduct (S,+) is an inverse semigroup. The relations θ and k, induced by tr and ker (resp.), are congruences on the lattice C(S) of all congruences on S. For ρ ∈ C(S), we have introduced four congruences and on S and showed that and . Different properties of ρθ and ρκ have been considered here. A congruence ρ on S is a Clifford congruence if and only if is a distributive lattice congruence and is a skew-ring congruence on S. If η (σ) is the least distributive...
Motivated by the paper by H. Herrlich, E. Tachtsis (2017) we investigate in ZFC the following compactness question: for which uncountable cardinals , an arbitrary nonempty system of homogeneous -linear equations is nontrivially solvable in provided that each of its subsystems of cardinality less than is nontrivially solvable in ?
We prove that every clone of operations on a finite set , if it contains a Malcev operation, is finitely related – i.e., identical with the clone of all operations respecting for some finitary relation over . It follows that for a fixed finite set , the set of all such Malcev clones is countable. This completes the solution of a problem that was first formulated in 1980, or earlier: how many Malcev clones can finite sets support? More generally, we prove that every finite algebra with few...