Displaying 681 – 700 of 1398

Showing per page

On covariety lattices

Tomasz Brengos (2008)

Discussiones Mathematicae - General Algebra and Applications

This paper shows basic properties of covariety lattices. Such lattices are shown to be infinitely distributive. The covariety lattice L C V ( K ) of subcovarieties of a covariety K of F-coalgebras, where F:Set → Set preserves arbitrary intersections is isomorphic to the lattice of subcoalgebras of a P κ -coalgebra for some cardinal κ. A full description of the covariety lattice of Id-coalgebras is given. For any topology τ there exist a bounded functor F:Set → Set and a covariety K of F-coalgebras, such that...

On distributive trices

Kiyomitsu Horiuchi, Andreja Tepavčević (2001)

Discussiones Mathematicae - General Algebra and Applications

A triple-semilattice is an algebra with three binary operations, which is a semilattice in respect of each of them. A trice is a triple-semilattice, satisfying so called roundabout absorption laws. In this paper we investigate distributive trices. We prove that the only subdirectly irreducible distributive trices are the trivial one and a two element one. We also discuss finitely generated free distributive trices and prove that a free distributive trice with two generators has 18 elements.

On exponentiation on n-ary hyperalgebras

František Bednařík, Josef Šlapal (2001)

Discussiones Mathematicae - General Algebra and Applications

For n-ary hyperalgebras we study a binary operation of exponentiation which to a given pair of n-ary hyperalgebras assigns their power, i.e., an n-ary hyperalgebra carried by the corresponding set of homomorphisms. We give sufficient conditions for the existence of such a power and for a decent behaviour of the exponentiation. As a consequence of our investigations we discover a cartesian closed subcategory of the category of n-ary hyperalgebras and homomorphisms between them.

On finite functions with non-trivial arity gap

Slavcho Shtrakov, Jörg Koppitz (2010)

Discussiones Mathematicae - General Algebra and Applications

Given an n-ary k-valued function f, gap(f) denotes the minimal number of essential variables in f which become fictive when identifying any two distinct essential variables in f. We particularly solve a problem concerning the explicit determination of n-ary k-valued functions f with 2 ≤ gap(f) ≤ n ≤ k. Our methods yield new combinatorial results about the number of such functions.

On free Turing algebras

Herbert Lugowski (1986)

Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry

Currently displaying 681 – 700 of 1398