Displaying 61 – 80 of 82

Showing per page

Quasitriangular Hopf group algebras and braided monoidal categories

Shiyin Zhao, Jing Wang, Hui-Xiang Chen (2014)

Czechoslovak Mathematical Journal

Let π be a group, and H be a semi-Hopf π -algebra. We first show that the category H of left π -modules over H is a monoidal category with a suitably defined tensor product and each element α in π induces a strict monoidal functor F α from H to itself. Then we introduce the concept of quasitriangular semi-Hopf π -algebra, and show that a semi-Hopf π -algebra H is quasitriangular if and only if the category H is a braided monoidal category and F α is a strict braided monoidal functor for any α π . Finally,...

Recursive coalgebras of finitary functors

Jiří Adámek, Dominik Lücke, Stefan Milius (2007)

RAIRO - Theoretical Informatics and Applications

For finitary set functors preserving inverse images, recursive coalgebras A of Paul Taylor are proved to be precisely those for which the system described by A always halts in finitely many steps.

Split extensions and semidirect products of unitary magmas

Marino Gran, George Janelidze, Manuela Sobral (2019)

Commentationes Mathematicae Universitatis Carolinae

We develop a theory of split extensions of unitary magmas, which includes defining such extensions and describing them via suitably defined semidirect product, yielding an equivalence between the categories of split extensions and of (suitably defined) actions of unitary magmas on unitary magmas. The class of split extensions is pullback stable but not closed under composition. We introduce two subclasses of it that have both of these properties.

Currently displaying 61 – 80 of 82