Products of multialgebras and their fundamental algebras.
Let be a group, and be a semi-Hopf -algebra. We first show that the category of left -modules over is a monoidal category with a suitably defined tensor product and each element in induces a strict monoidal functor from to itself. Then we introduce the concept of quasitriangular semi-Hopf -algebra, and show that a semi-Hopf -algebra is quasitriangular if and only if the category is a braided monoidal category and is a strict braided monoidal functor for any . Finally,...
For finitary set functors preserving inverse images, recursive coalgebras A of Paul Taylor are proved to be precisely those for which the system described by A always halts in finitely many steps.
We develop a theory of split extensions of unitary magmas, which includes defining such extensions and describing them via suitably defined semidirect product, yielding an equivalence between the categories of split extensions and of (suitably defined) actions of unitary magmas on unitary magmas. The class of split extensions is pullback stable but not closed under composition. We introduce two subclasses of it that have both of these properties.