Sur le rang et la définissabilité des opérations implicites dans les classes d'algèbres
Given a basis of pseudoidentities for a pseudovariety of ordered semigroups containing the 5-element aperiodic Brandt semigroup , under the natural order, it is shown that the same basis, over the most general graph over which it can be read, defines the global. This is used to show that the global of the pseudovariety of level of Straubing-Thérien’s concatenation hierarchy has infinite vertex rank.
Given a basis of pseudoidentities for a pseudovariety of ordered semigroups containing the 5-element aperiodic Brandt semigroup B2, under the natural order, it is shown that the same basis, over the most general graph over which it can be read, defines the global. This is used to show that the global of the pseudovariety of level 3/2 of Straubing-Thérien's concatenation hierarchy has infinite vertex rank.
We define and compare a selection of congruence properties of quasivarieties, including the relative congruence meet semi-distributivity, RSD(∧), and the weak extension property, WEP. We prove that if 𝒦 ⊆ ℒ ⊆ ℒ' are quasivarieties of finite signature, and ℒ' is finitely generated while 𝒦 ⊨ WEP, then 𝒦 is finitely axiomatizable relative to ℒ. We prove for any quasivariety 𝒦 that 𝒦 ⊨ RSD(∧) iff 𝒦 has pseudo-complemented congruence lattices and 𝒦 ⊨ WEP. Applying these results and other results...
A number of new results that say how to transfer the entailment relation between two different finite generators of a quasi-variety of algebras is presented. As their consequence, a well-known result saying that dualisability of a quasi-variety is independent of the generating algebra is derived. The transferral of endodualisability is also considered and the results are illustrated by examples.
Results saying how to transfer the entailment in certain minimal and maximal ways and how to transfer strong dualisability between two different finite generators of a quasi-variety of algebras are presented. A new proof for a well-known result in the theory of natural dualities which says that strong dualisability of a quasi-variety is independent of the generating algebra is derived.
In an earlier paper, the authors showed that standard semigroups , and play an important role in the classification of weaker versions of alg-universality of semigroup varieties. This paper shows that quasivarieties generated by and are neither relatively alg-universal nor -universal, while there do exist finite semigroups and generating the same semigroup variety as and respectively and the quasivarieties generated by and/or are quasivar-relatively -alg-universal and -universal...