Ramanujan sums and almost periodic functions
Page 1 Next
P. Erdös, M. Kac, E. van Kampen, A. Wintner (1940)
Studia Mathematica
Wolfgang Schwarz (1973)
Acta Arithmetica
Haukkanen, P. (1999)
Portugaliae Mathematica
McCarthy, Paul J. (1968)
Portugaliae mathematica
P. J. McCarthy (1971)
Colloquium Mathematicae
Yuichi Kamiya, Leo Murata (2012)
Journal de Théorie des Nombres de Bordeaux
In the study of the -adic sum of digits function , the arithmetical function and for plays a very important role. In this paper, we firstly generalize the relation between and to a bijective relation between arithmetical functions. And as an application, we investigate some aspects of the sum of digits functions induced by binary infinite Gray codes . We can show that the difference of the sum of digits function, , is realized by an automaton. And the summation formula of the sum...
Andrzej Makowski (1972)
Elemente der Mathematik
Fehér, Zoltán, László, Béla, Maǎj, Martin, Šalát, Tibor (2006)
Annales Mathematicae et Informaticae
Tóth, László (2004)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Andrzej Schinzel, Tibor Šalát (1994)
Mathematica Slovaca
P Erdös (1959)
Acta Arithmetica
Paul Erdös (1959)
Acta Arithmetica
A. Ivic, W. Scharz (1980)
Aequationes mathematicae
(1959)
Acta Arithmetica
Liouville, J. (1869)
Journal de Mathématiques Pures et Appliquées
A. Smati (1992)
Acta Arithmetica
J. Meyer (1983)
Acta Arithmetica
Jacques MEYER (1981/1982)
Seminaire de Théorie des Nombres de Bordeaux
Ernest X. W. Xia, Olivia X. M. Yao, A. F. Y. Zhao (2015)
Colloquium Mathematicae
For nonnegative integers a, b, c and positive integer n, let N(a,b,c;n) denote the number of representations of n by the form . Explicit formulas for N(a,b,c;n) for some small values were determined by Alaca, Alaca and Williams, by Chan and Cooper, by Köklüce, and by Lomadze. We establish formulas for N(2,1,0;n), N(2,0,1;n), N(1,2,0;n), N(1,0,2;n) and N(1,1,1;n) by employing the (p, k)-parametrization of three 2-dimensional theta functions due to Alaca, Alaca and Williams.
Akhtar, Reza, Evans, Anthony B., Pritikin, Dan (2010)
Integers
Page 1 Next