Page 1

Displaying 1 – 14 of 14

Showing per page

Factorization of matrices associated with classes of arithmetical functions

Shaofang Hong (2003)

Colloquium Mathematicae

Let f be an arithmetical function. A set S = x₁,..., xₙ of n distinct positive integers is called multiple closed if y ∈ S whenever x|y|lcm(S) for any x ∈ S, where lcm(S) is the least common multiple of all elements in S. We show that for any multiple closed set S and for any divisor chain S (i.e. x₁|...|xₙ), if f is a completely multiplicative function such that (f*μ)(d) is a nonzero integer whenever d|lcm(S), then the matrix ( f ( x i , x i ) ) having f evaluated at the greatest common divisor ( x i , x i ) of x i and x i as its...

Fermat test with Gaussian base and Gaussian pseudoprimes

José María Grau, Antonio M. Oller-Marcén, Manuel Rodríguez, Daniel Sadornil (2015)

Czechoslovak Mathematical Journal

The structure of the group ( / n ) and Fermat’s little theorem are the basis for some of the best-known primality testing algorithms. Many related concepts arise: Euler’s totient function and Carmichael’s lambda function, Fermat pseudoprimes, Carmichael and cyclic numbers, Lehmer’s totient problem, Giuga’s conjecture, etc. In this paper, we present and study analogues to some of the previous concepts arising when we consider the underlying group 𝒢 n : = { a + b i [ i ] / n [ i ] : a 2 + b 2 1 ( mod n ) } . In particular, we characterize Gaussian Carmichael numbers...

Fibonacci Numbers with the Lehmer Property

Florian Luca (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

We show that if m > 1 is a Fibonacci number such that ϕ(m) | m-1, where ϕ is the Euler function, then m is prime

F-Normalreihen.

Herbert Möller (1977)

Journal für die reine und angewandte Mathematik

Currently displaying 1 – 14 of 14

Page 1