Calculating a determinant associated with multiplicative functions
Let be a complex valued multiplicative function. For any , we compute the value of the determinant where denotes the greatest common divisor of and , which appear in increasing order in rows and columns. Precisely we prove that This means that is a multiplicative function of . The algebraic apparatus associated with this result allows us to prove the following two results. The first one is the characterization of real multiplicative functions , with , as minimal values of certain...