Displaying 681 – 700 of 1815

Showing per page

Minimal redundant digit expansions in the gaussian integers

Clemens Heuberger (2002)

Journal de théorie des nombres de Bordeaux

We consider minimal redundant digit expansions in canonical number systems in the gaussian integers. In contrast to the case of rational integers, where the knowledge of the two least significant digits in the “standard” expansion suffices to calculate the least significant digit in a minimal redundant expansion, such a property does not hold in the gaussian numbers : We prove that there exist pairs of numbers whose non-redundant expansions agree arbitrarily well but which have different least significant...

Mod p structure of alternating and non-alternating multiple harmonic sums

Jianqiang Zhao (2011)

Journal de Théorie des Nombres de Bordeaux

The well-known Wolstenholme’s Theorem says that for every prime p > 3 the ( p - 1 ) -st partial sum of the harmonic series is congruent to 0 modulo p 2 . If one replaces the harmonic series by k 1 1 / n k for k even, then the modulus has to be changed from p 2 to just p . One may consider generalizations of this to multiple harmonic sums (MHS) and alternating multiple harmonic sums (AMHS) which are partial sums of multiple zeta value series and the alternating Euler sums, respectively. A lot of results along this direction...

Currently displaying 681 – 700 of 1815