Displaying 101 – 120 of 1815

Showing per page

A q -congruence for a truncated 4 ϕ 3 series

Victor J. W. Guo, Chuanan Wei (2021)

Czechoslovak Mathematical Journal

Let Φ n ( q ) denote the n th cyclotomic polynomial in q . Recently, Guo, Schlosser and Zudilin proved that for any integer n > 1 with n 1 ( mod 4 ) , k = 0 n - 1 ( q - 1 ; q 2 ) k 2 ( q - 2 ; q 4 ) k ( q 2 ; q 2 ) k 2 ( q 4 ; q 4 ) k q 6 k 0 ( mod Φ n ( q ) 2 ) , where ( a ; q ) m = ( 1 - a ) ( 1 - a q ) ( 1 - a q m - 1 ) . In this note, we give a generalization of the above q -congruence to the modulus Φ n ( q ) 3 case. Meanwhile, we give a corresponding q -congruence modulo Φ n ( q ) 2 for n 3 ( mod 4 ) . Our proof is based on the ‘creative microscoping’ method, recently developed by Guo and Zudilin, and a 4 ϕ 3 summation formula.

A recovery of Brouncker's proof for the quadrature continued fraction.

Sergey Khrushchev (2006)

Publicacions Matemàtiques

350 years ago in Spring of 1655 Sir William Brouncker on a request by John Wallis obtained a beautiful continued fraction for 4/π. Brouncker never published his proof. Many sources on the history of Mathematics claim that this proof was lost forever. In this paper we recover the original proof from Wallis' remarks presented in his Arithmetica Infinitorum. We show that Brouncker's and Wallis' formulas can be extended to MacLaurin's sinusoidal spirals via related Euler's products. We derive Ramanujan's...

A recursive definition of p -ary addition without carry

François Laubie (1999)

Journal de théorie des nombres de Bordeaux

Let p be a prime number. In this paper we prove that the addition in p -ary without carry admits a recursive definition like in the already known cases p = 2 and p = 3 .

Currently displaying 101 – 120 of 1815