A property of the Euler -function concerning the integers which are regular modulo n
Let denote the th cyclotomic polynomial in . Recently, Guo, Schlosser and Zudilin proved that for any integer with , where . In this note, we give a generalization of the above -congruence to the modulus case. Meanwhile, we give a corresponding -congruence modulo for . Our proof is based on the ‘creative microscoping’ method, recently developed by Guo and Zudilin, and a summation formula.
350 years ago in Spring of 1655 Sir William Brouncker on a request by John Wallis obtained a beautiful continued fraction for 4/π. Brouncker never published his proof. Many sources on the history of Mathematics claim that this proof was lost forever. In this paper we recover the original proof from Wallis' remarks presented in his Arithmetica Infinitorum. We show that Brouncker's and Wallis' formulas can be extended to MacLaurin's sinusoidal spirals via related Euler's products. We derive Ramanujan's...
Let be a prime number. In this paper we prove that the addition in -ary without carry admits a recursive definition like in the already known cases and .