Displaying 1221 – 1240 of 1815

Showing per page

Prime constellations in triangles with binomial coefficient congruences

Larry Ericksen (2009)

Acta Mathematica Universitatis Ostraviensis

The primality of numbers, or of a number constellation, will be determined from residue solutions in the simultaneous congruence equations for binomial coefficients found in Pascal’s triangle. A prime constellation is a set of integers containing all prime numbers. By analyzing these congruences, we can verify the primality of any number. We present different arrangements of binomial coefficient elements for Pascal’s triangle, such as by the row shift method of Mann and Shanks and especially by...

Prime Factorization of Sums and Differences of Two Like Powers

Rafał Ziobro (2016)

Formalized Mathematics

Representation of a non zero integer as a signed product of primes is unique similarly to its representations in various types of positional notations [4], [3]. The study focuses on counting the prime factors of integers in the form of sums or differences of two equal powers (thus being represented by 1 and a series of zeroes in respective digital bases). Although the introduced theorems are not particularly important, they provide a couple of shortcuts useful for integer factorization, which could...

Prime numbers along Rudin–Shapiro sequences

Christian Mauduit, Joël Rivat (2015)

Journal of the European Mathematical Society

For a large class of digital functions f , we estimate the sums n x Λ ( n ) f ( n ) (and n x μ ( n ) f ( n ) , where Λ denotes the von Mangoldt function (and μ the Möbius function). We deduce from these estimates a Prime Number Theorem (and a Möbius randomness principle) for sequences of integers with digit properties including the Rudin-Shapiro sequence and some of its generalizations.

Currently displaying 1221 – 1240 of 1815