The search session has expired. Please query the service again.

Displaying 361 – 380 of 444

Showing per page

Some congruences involving binomial coefficients

Hui-Qin Cao, Zhi-Wei Sun (2015)

Colloquium Mathematicae

Binomial coefficients and central trinomial coefficients play important roles in combinatorics. Let p > 3 be a prime. We show that T p - 1 ( p / 3 ) 3 p - 1 ( m o d p ² ) , where the central trinomial coefficient Tₙ is the constant term in the expansion of ( 1 + x + x - 1 ) . We also prove three congruences modulo p³ conjectured by Sun, one of which is k = 0 p - 1 p - 1 k 2 k k ( ( - 1 ) k - ( - 3 ) - k ) ( p / 3 ) ( 3 p - 1 - 1 ) ( m o d p ³ ) . In addition, we get some new combinatorial identities.

Some identities involving differences of products of generalized Fibonacci numbers

Curtis Cooper (2015)

Colloquium Mathematicae

Melham discovered the Fibonacci identity F n + 1 F n + 2 F n + 6 - F ³ n + 3 = ( - 1 ) F . He then considered the generalized sequence Wₙ where W₀ = a, W₁ = b, and W = p W n - 1 + q W n - 2 and a, b, p and q are integers and q ≠ 0. Letting e = pab - qa² - b², he proved the following identity: W n + 1 W n + 2 W n + 6 - W ³ n + 3 = e q n + 1 ( p ³ W n + 2 - q ² W n + 1 ) . There are similar differences of products of Fibonacci numbers, like this one discovered by Fairgrieve and Gould: F F n + 4 F n + 5 - F ³ n + 3 = ( - 1 ) n + 1 F n + 6 . We prove similar identities. For example, a generalization of Fairgrieve and Gould’s identity is W W n + 4 W n + 5 - W ³ n + 3 = e q ( p ³ W n + 4 - q W n + 5 ) .

Some interpretations of the ( k , p ) -Fibonacci numbers

Natalia Paja, Iwona Włoch (2021)

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider two parameters generalization of the Fibonacci numbers and Pell numbers, named as the ( k , p ) -Fibonacci numbers. We give some new interpretations of these numbers. Moreover using these interpretations we prove some identities for the ( k , p ) -Fibonacci numbers.

Square-free Lucas d -pseudoprimes and Carmichael-Lucas numbers

Walter Carlip, Lawrence Somer (2007)

Czechoslovak Mathematical Journal

Let d be a fixed positive integer. A Lucas d -pseudoprime is a Lucas pseudoprime N for which there exists a Lucas sequence U ( P , Q ) such that the rank of N in U ( P , Q ) is exactly ( N - ε ( N ) ) / d , where ε is the signature of U ( P , Q ) . We prove here that all but a finite number of Lucas d -pseudoprimes are square free. We also prove that all but a finite number of Lucas d -pseudoprimes are Carmichael-Lucas numbers.

Stirling pairs

L. Carlitz (1978)

Rendiconti del Seminario Matematico della Università di Padova

Currently displaying 361 – 380 of 444