The search session has expired. Please query the service again.

Displaying 21 – 40 of 43

Showing per page

Square-free Lucas d -pseudoprimes and Carmichael-Lucas numbers

Walter Carlip, Lawrence Somer (2007)

Czechoslovak Mathematical Journal

Let d be a fixed positive integer. A Lucas d -pseudoprime is a Lucas pseudoprime N for which there exists a Lucas sequence U ( P , Q ) such that the rank of N in U ( P , Q ) is exactly ( N - ε ( N ) ) / d , where ε is the signature of U ( P , Q ) . We prove here that all but a finite number of Lucas d -pseudoprimes are square free. We also prove that all but a finite number of Lucas d -pseudoprimes are Carmichael-Lucas numbers.

Stirling pairs

L. Carlitz (1978)

Rendiconti del Seminario Matematico della Università di Padova

Sur les carrés dans certaines suites de Lucas

Maurice Mignotte, Attila Pethö (1993)

Journal de théorie des nombres de Bordeaux

Soit a un entier 3 . Pour α = ( a + a 2 - 4 ) / 2 et β = ( a - a 2 - 4 ) / 2 , nous considérons la suite de Lucas 𝑢 𝑛 = ( α 𝑛 - β 𝑛 ) / ( α - β ) . Nous montrons que, pour a 4 , 𝑢 𝑛 n’est ni un carré, ni le double, ni le triple d’un carré, ni six fois un carré pour n > 3 sauf si a = 338 et n = 4 .

Currently displaying 21 – 40 of 43