Previous Page 2

Displaying 21 – 32 of 32

Showing per page

On the distribution of sparse sequences in prime fields and applications

Víctor Cuauhtemoc García (2013)

Journal de Théorie des Nombres de Bordeaux

In the present paper we investigate distributional properties of sparse sequences modulo almost all prime numbers. We obtain new results for a wide class of sparse sequences which in particular find applications on additive problems and the discrete Littlewood problem related to lower bound estimates of the L 1 -norm of trigonometric sums.

On the index of length four minimal zero-sum sequences

Caixia Shen, Li-meng Xia, Yuanlin Li (2014)

Colloquium Mathematicae

Let G be a finite cyclic group. Every sequence S over G can be written in the form S = ( n g ) · . . . · ( n l g ) where g ∈ G and n , . . . , n l i [ 1 , o r d ( g ) ] , and the index ind(S) is defined to be the minimum of ( n + + n l ) / o r d ( g ) over all possible g ∈ G such that ⟨g⟩ = G. A conjecture says that every minimal zero-sum sequence of length 4 over a finite cyclic group G with gcd(|G|,6) = 1 has index 1. This conjecture was confirmed recently for the case when |G| is a product of at most two prime powers. However, the general case is still open. In this paper, we make some...

On the Number of Partitions of an Integer in the m -bonacci Base

Marcia Edson, Luca Q. Zamboni (2006)

Annales de l’institut Fourier

For each m 2 , we consider the m -bonacci numbers defined by F k = 2 k for 0 k m - 1 and F k = F k - 1 + F k - 2 + + F k - m for k m . When m = 2 , these are the usual Fibonacci numbers. Every positive integer n may be expressed as a sum of distinct m -bonacci numbers in one or more different ways. Let R m ( n ) be the number of partitions of n as a sum of distinct m -bonacci numbers. Using a theorem of Fine and Wilf, we obtain a formula for R m ( n ) involving sums of binomial coefficients modulo 2 . In addition we show that this formula may be used to determine the number of partitions...

On the Olson and the Strong Davenport constants

Oscar Ordaz, Andreas Philipp, Irene Santos, Wolfgang A. Schmid (2011)

Journal de Théorie des Nombres de Bordeaux

A subset S of a finite abelian group, written additively, is called zero-sumfree if the sum of the elements of each non-empty subset of S is non-zero. We investigate the maximal cardinality of zero-sumfree sets, i.e., the (small) Olson constant. We determine the maximal cardinality of such sets for several new types of groups; in particular, p -groups with large rank relative to the exponent, including all groups with exponent at most five. These results are derived as consequences of more general...

On the structure of sequences with forbidden zero-sum subsequences

W. D. Gao, R. Thangadurai (2003)

Colloquium Mathematicae

We study the structure of longest sequences in d which have no zero-sum subsequence of length n (or less). We prove, among other results, that for n = 2 a and d arbitrary, or n = 3 a and d = 3, every sequence of c(n,d)(n-1) elements in d which has no zero-sum subsequence of length n consists of c(n,d) distinct elements each appearing n-1 times, where c ( 2 a , d ) = 2 d and c ( 3 a , 3 ) = 9 .

On vertex stability with regard to complete bipartite subgraphs

Aneta Dudek, Andrzej Żak (2010)

Discussiones Mathematicae Graph Theory

A graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H ever after removing any of its k vertices. Q(H;k) denotes the minimum size among the sizes of all (H;k)-vertex stable graphs. In this paper we complete the characterization of ( K m , n ; 1 ) -vertex stable graphs with minimum size. Namely, we prove that for m ≥ 2 and n ≥ m+2, Q ( K m , n ; 1 ) = m n + m + n and K m , n * K as well as K m + 1 , n + 1 - e are the only ( K m , n ; 1 ) -vertex stable graphs with minimum size, confirming the conjecture of Dudek and Zwonek.

Currently displaying 21 – 32 of 32

Previous Page 2