Simultaneous quadratic equations II
R. Cook (1973)
Acta Arithmetica
Christopher M. Skinner (1996)
Acta Arithmetica
L. Mordell (1971)
Acta Arithmetica
M. Dodson (1982)
Acta Arithmetica
Yong Zhang (2016)
Colloquium Mathematicae
Let f ∈ ℚ [X] be a polynomial without multiple roots and with deg(f) ≥ 2. We give conditions for f(X) = AX² + BX + C such that the Diophantine equation f(x)f(y) = f(z)² has infinitely many nontrivial integer solutions and prove that this equation has a rational parametric solution for infinitely many irreducible cubic polynomials. Moreover, we consider f(x)f(y) = f(z)² for quartic polynomials.
Trevor D. Wooley (1996)
Monatshefte für Mathematik
Jean-Marc Deshouillers (1990)
Journal de théorie des nombres de Bordeaux
Guy Terjanian (1978)
Acta Arithmetica
P. Tannery (1886)
Bulletin de la Société Mathématique de France
Ajai Choudhry (1991)
Acta Arithmetica
D.B. Leep, W.M. Schmidt (1983)
Inventiones mathematicae
Henryk Iwaniec, Ritabrata Munshi (2010)
Journal de Théorie des Nombres de Bordeaux
We give non-trivial upper bounds for the number of integral solutions, of given size, of a system of two quadratic form equations in five variables.
Oscar Marmon (2010)
Acta Arithmetica
Nic Niedermowwe (2010)
Acta Arithmetica
Susil Kumar Jena (2013)
Czechoslovak Mathematical Journal
Each of the Diophantine equations has an infinite number of integral solutions for any positive integer . In this paper, we will show how the method of infinite ascent could be applied to generate these solutions. We will investigate the conditions when , and are pair-wise co-prime. As a side result of this investigation, we will show a method of generating an infinite number of co-prime integral solutions of the Diophantine equation for any co-prime integer pair .
E.M. Wright (1979)
Journal für die reine und angewandte Mathematik
Eleonore Krubeck (1953/1954)
Mathematische Zeitschrift
Aaron Levin (2008)
Journal de Théorie des Nombres de Bordeaux
We consider some variations on the classical method of Runge for effectively determining integral points on certain curves. We first prove a version of Runge’s theorem valid for higher-dimensional varieties, generalizing a uniform version of Runge’s theorem due to Bombieri. We then take up the study of how Runge’s method may be expanded by taking advantage of certain coverings. We prove both a result for arbitrary curves and a more explicit result for superelliptic curves. As an application of our...
William G. Ellison (1971/1972)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
М.И. Исраилов (1970)
Matematiceskij sbornik