Page 1

Displaying 1 – 5 of 5

Showing per page

A formula for the number of solutions of a restricted linear congruence

K. Vishnu Namboothiri (2021)

Mathematica Bohemica

Consider the linear congruence equation x 1 + ... + x k b ( mod n s ) for b , n , s . Let ( a , b ) s denote the generalized gcd of a and b which is the largest l s with l dividing a and b simultaneously. Let d 1 , ... , d τ ( n ) be all positive divisors of n . For each d j n , define 𝒞 j , s ( n ) = { 1 x n s : ( x , n s ) s = d j s } . K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on x i . We generalize their result with generalized gcd restrictions on x i and prove that for the above linear congruence, the number of solutions...

A system of simultaneous congruences arising from trinomial exponential sums

Todd Cochrane, Jeremy Coffelt, Christopher Pinner (2006)

Journal de Théorie des Nombres de Bordeaux

For a prime p and positive integers < k < h < p with d = ( h , k , , p - 1 ) , we show that M , the number of simultaneous solutions x , y , z , w in p * to x h + y h = z h + w h , x k + y k = z k + w k , x + y = z + w , satisfies M 3 d 2 ( p - 1 ) 2 + 25 h k ( p - 1 ) . When h k = o ( p d 2 ) we obtain a precise asymptotic count on M . This leads to the new twisted exponential sum bound x = 1 p - 1 χ ( x ) e 2 π i f ( x ) / p 3 1 4 d 1 2 p 7 8 + 5 h k 1 4 p 5 8 , for trinomials f = a x h + b x k + c x , and to results on the average size of such sums.

Currently displaying 1 – 5 of 5

Page 1