On Epstein's Zeta-function.
We investigate the value-distribution of Epstein zeta-functions ζ(s; Q), where Q is a positive definite quadratic form in n variables. We prove an asymptotic formula for the number of c-values, i.e., the roots of the equation ζ(s; Q) = c, where c is any fixed complex number. Moreover, we show that, in general, these c-values are asymmetrically distributed with respect to the critical line Re s =n/4. This complements previous results on the zero-distribution.[Proceedings of the Primeras Jornadas...