On a class of positive semidefinite biquadratic forms. (Sur une classe de formes biquadratiques semi-définies positives.)
We find complete sets of generating relations between the elements [r] = rⁿ - r for and for n = 3. One of these relations is the n-derivation property [rs] = rⁿ[s] + s[r], r,s ∈ R.
Let be a prime and a -adic field (a finite extension of the field of -adic numbers ). We employ the main results in [12] and the arithmetic of elliptic curves over to reduce the problem of classifying 3-dimensional non-associative division algebras (up to isotopy) over to the classification of ternary cubic forms over (up to equivalence) with no non-trivial zeros over . We give an explicit solution to the latter problem, which we then relate to the reduction type of the jacobian...