Loading [MathJax]/extensions/MathZoom.js
We give a classification of finite group actions on a surface giving rise to quotients, from the point of view of their fixed points. It is shown that except two cases, each such group gives rise to a unique type of fixed point set.
A generalised Weber function is given by , where η(z) is the Dedekind function and N is any integer; the original function corresponds to N=2. We classify the cases where some power evaluated at some quadratic integer generates the ring class field associated to an order of an imaginary quadratic field. We compare the heights of our invariants by giving a general formula for the degree of the modular equation relating and j(z). Our ultimate goal is the use of these invariants in constructing...
Currently displaying 1 –
4 of
4