Rational periodic points for quadratic maps
Let be a number field. Let be a finite set of places of containing all the archimedean ones. Let be the ring of -integers of . In the present paper we consider endomorphisms of of degree , defined over , with good reduction outside . We prove that there exist only finitely many such endomorphisms, up to conjugation by , admitting a periodic point in of order . Also, all but finitely many classes with a periodic point in of order are parametrized by an irreducible curve.