Systole et invariant d'Hermite.
1. Introduction. The properties of euclidean lattices with respect to tensor product have been studied in a series of papers by Kitaoka ([K, Chapter 7], [K1]). A rather natural problem which was investigated there, among others, was the determination of the short vectors in the tensor product L οtimes M of two euclidean lattices L and M. It was shown for instance that up to dimension 43 these short vectors are split, as one might hope. The present paper deals with a similar question...
Nous développons une théorie de Voronoï géométrique. En l’appliquant aux familles classiques de réseaux euclidiens (par exemple symplectiques ou orthogonaux), nous obtenons notamment de nouveaux résultats de finitude concernant les configurations de vecteurs minimaux et les réseaux particuliers (par exemple parfaits) de ces familles. Les méthodes géométriques introduites sont également illustrées par l’étude d’objets voisins (formes de Humbert) ou analogues (surfaces de Riemann).
Dans cet article, nous allons démontrer qu’étant donné , un sous-groupe fini de , il n’y a, à -équivalence près, qu’un nombre fini de formes -parfaites (resp. -eutactiques, -extrêmes).
On construit pour tout entier pair un couple dual-extrême de réseaux euclidiens de dimension dont aucun n’est parfait, et tel que l’un d’entre eux seulement soit eutactique.