Extreme copositive quadratic forms
Soit un sous-groupe de rang maximal d’un corps de nombres . On montre qu’une fonction entière, envoyant dans l’anneau des entiers d’une extension finie de , de croissance analytique et arithmétique faibles est un polynôme. Ce résultat étend un théorème bien connu de Pólya. On montre également que ce résultat est à constante près optimal.
This paper explores the study of the general Hermite constant associated with the general linear group and its irreducible representations, as defined by T. Watanabe. To that end, a height, which naturally applies to flag varieties, is built and notions of perfection and eutaxy characterising extremality are introduced. Finally we acquaint some relations (e.g., with Korkine–Zolotareff reduction), upper bounds and computation relative to these constants.