Methoden des grossen Siebes in algebraischen Zahlkörpern. Jürgen G. Hinz (1986/1987) Manuscripta mathematica
More than two fifths of the zeros of the Riemann zeta function are on the critical line. J.B. Conrey (1989) Journal für die reine und angewandte Mathematik
Multiplicative character sums for nonlinear recurring sequences Harald Niederreiter, Arne Winterhof (2004) Acta Arithmetica
Multiplicity results for the functional equation of the Dirichlet L-functions: case p=2 G. Molteni (2010) Acta Arithmetica
Multiplicity results for the functional equation of the Dirichlet L-functions G. Molteni (2010) Acta Arithmetica
Newton polyhedra and the degree of the L-function associated to an exponential sum. A. Adolphson, S. Sperber (1987) Inventiones mathematicae
Nombre de zéros des fonctions exponentielles-polynômes Philippe Robba (1976/1977) Groupe de travail d'analyse ultramétrique
Nombres presque premiers et sommes trigonométriques Jean-Marc Deshouillers (1970/1971) Séminaire de théorie des nombres de Bordeaux
Nombres presque-premiers dans de petits intervalles M. LABORDE (1977/1978) Seminaire de Théorie des Nombres de Bordeaux
Nonlinear exponential twists of the Liouville function Qingfeng Sun (2011) Open Mathematics Let λ(n) be the Liouville function. We find a nontrivial upper bound for the sum ∑ X ⩽ n ⩽ 2 X λ ( n ) e 2 π i α n , 0 ≠ α ∈ ℝ The main tool we use is Vaughan’s identity for λ(n).