Page 1 Next

Displaying 1 – 20 of 39

Showing per page

P 2 in short intervals

Henryk Iwaniec, M. Laborde (1981)

Annales de l'institut Fourier

For any sufficiently large real number x , the interval [ x , x + x 0 , 45 ] contains at least one integer having at most two prime factors .

Pairs of square-free values of the type n 2 + 1 , n 2 + 2

Stoyan Dimitrov (2021)

Czechoslovak Mathematical Journal

We show that there exist infinitely many consecutive square-free numbers of the form n 2 + 1 , n 2 + 2 . We also establish an asymptotic formula for the number of such square-free pairs when n does not exceed given sufficiently large positive number.

Piatetski-Shapiro meets Chebotarev

Yıldırım Akbal, Ahmet Muhtar Güloğlu (2015)

Acta Arithmetica

Let K be a finite Galois extension of the field ℚ of rational numbers. We prove an asymptotic formula for the number of Piatetski-Shapiro primes not exceeding a given quantity for which the associated Frobenius class of automorphisms coincides with any given conjugacy class in the Galois group of K/ℚ. In particular, this shows that there are infinitely many Piatetski-Shapiro primes of the form a² + nb² for any given natural number n.

Piatetski-Shapiro sequences

Roger C. Baker, William D. Banks, Jörg Brüdern, Igor E. Shparlinski, Andreas J. Weingartner (2013)

Acta Arithmetica

Points rationnels sur les quotients d’Atkin-Lehner de courbes de Shimura de discriminant p q

Florence Gillibert (2013)

Annales de l’institut Fourier

Soient p et q deux nombres premiers distincts et X p q / w q le quotient de la courbe de Shimura de discriminant p q par l’involution d’Atkin-Lehner w q . Nous décrivons un moyen permettant de vérifier un critère de Parent et Yafaev en grande généralité pour prouver que si p et q satisfont des conditions de congruence explicites, connues comme les conditions du cas non ramifié de Ogg, et si p est assez grand par rapport à q , alors le quotient X p q / w q n’a pas de point rationnel non spécial.

Power-moments of SL 3 ( ) Kloosterman sums

Goran Djanković (2013)

Czechoslovak Mathematical Journal

Classical Kloosterman sums have a prominent role in the study of automorphic forms on GL 2 and further they have numerous applications in analytic number theory. In recent years, various problems in analytic theory of automorphic forms on GL 3 have been considered, in which analogous GL 3 -Kloosterman sums (related to the corresponding Bruhat decomposition) appear. In this note we investigate the first four power-moments of the Kloosterman sums associated with the group SL 3 ( ) . We give formulas for the...

Prime numbers along Rudin–Shapiro sequences

Christian Mauduit, Joël Rivat (2015)

Journal of the European Mathematical Society

For a large class of digital functions f , we estimate the sums n x Λ ( n ) f ( n ) (and n x μ ( n ) f ( n ) , where Λ denotes the von Mangoldt function (and μ the Möbius function). We deduce from these estimates a Prime Number Theorem (and a Möbius randomness principle) for sequences of integers with digit properties including the Rudin-Shapiro sequence and some of its generalizations.

Currently displaying 1 – 20 of 39

Page 1 Next