Page 1

Displaying 1 – 7 of 7

Showing per page

Renormalization of exponential sums and matrix cocycles

Alexander Fedotov, Frédéric Klopp (2004/2005)

Séminaire Équations aux dérivées partielles

In this paper, we present a new point of view on the renormalization of some exponential sums stemming from number theory. We generalize this renormalization procedure to study some matrix cocycles arising in spectral problems of quantum mechanics

Restriction theory of the Selberg sieve, with applications

Ben Green, Terence Tao (2006)

Journal de Théorie des Nombres de Bordeaux

The Selberg sieve provides majorants for certain arithmetic sequences, such as the primes and the twin primes. We prove an L 2 L p restriction theorem for majorants of this type. An immediate application is to the estimation of exponential sums over prime k -tuples. Let a 1 , , a k and b 1 , , b k be positive integers. Write h ( θ ) : = n X e ( n θ ) , where X is the set of all n N such that the numbers a 1 n + b 1 , , a k n + b k are all prime. We obtain upper bounds for h L p ( 𝕋 ) , p > 2 , which are (conditionally on the Hardy-Littlewood prime tuple conjecture) of the correct order...

Currently displaying 1 – 7 of 7

Page 1