Prime power divisors of binomial coefficients.
For positive integers m, U and V, we obtain an asymptotic formula for the number of integer points (u,v) ∈ [1,U] × [1,V] which belong to the modular hyperbola uv ≡ 1 (mod m) and also have gcd(u,v) =1, which are also known as primitive points. Such points have a nice geometric interpretation as points on the modular hyperbola which are "visible" from the origin.
We consider Weil sums of binomials of the form , where F is a finite field, ψ: F → ℂ is the canonical additive character, , and . If we fix F and d, and examine the values of as a runs through , we always obtain at least three distinct values unless d is degenerate (a power of the characteristic of F modulo ). Choices of F and d for which we obtain only three values are quite rare and desirable in a wide variety of applications. We show that if F is a field of order 3ⁿ with n odd, and with...
L’objet de ce travail est d’étudier les propriétés arithmétiques et statistiques des mots infinis et des suites de nombres entiers engendrés par des substitutions sur un alphabet infini ou par des automates déterministes ayant un nombre infini dénombrable d’états. En particulier, nous montrons que si est une suite de nombres entiers engendrée par un automate dont le graphe étiqueté associé représente une marche aléatoire de moyenne nulle sur un réseau de ( entier positif), alors la suite ...
Pour majorer les sommes d’exponentielles de la forme uniquement en fonction de la dérivée -ième de , on dispose soit de la méthode de van der Corput pour les petites valeurs de , soit de celle de Vinogradov pour les grandes valeurs de . La jonction entre ces deux méthodes, tenant compte des progrès récents de l’une et de l’autre, est obtenue ici en étudiant les cas par une méthode qui relève essentiellement de celle de Vinogradov. Des calculs difficiles, effectués sur ordinateur, rendent...