Previous Page 9

Displaying 161 – 174 of 174

Showing per page

On the sphere problem.

Fernando Chamizo, Henryk Iwaniec (1995)

Revista Matemática Iberoamericana

One of the oldest problems in analytic number theory consists of counting points with integer coordinates in the d-dimensional ball. It is very easy to find a main term for the counting function, but the size of the error term is difficult to estimate (...).

On the torsion of the Jacobians of the hyperelliptic curves y² = xⁿ + a and y² = x(xⁿ+a)

Tomasz Jędrzejak (2016)

Acta Arithmetica

Consider two families of hyperelliptic curves (over ℚ), C n , a : y ² = x + a and C n , a : y ² = x ( x + a ) , and their respective Jacobians J n , a , J n , a . We give a partial characterization of the torsion part of J n , a ( ) and J n , a ( ) . More precisely, we show that the only prime factors of the orders of such groups are 2 and prime divisors of n (we also give upper bounds for the exponents). Moreover, we give a complete description of the torsion part of J 8 , a ( ) . Namely, we show that J 8 , a ( ) t o r s = J 8 , a ( ) [ 2 ] . In addition, we characterize the torsion parts of J p , a ( ) , where p is an odd prime, and...

Oscillations of Hecke eigenvalues at shifted primes.

Liangyi Zhao (2006)

Revista Matemática Iberoamericana

In this paper, we are interested in exploring the cancellation of Hecke eigenvalues twisted with an exponential sums whose amplitude is √n at prime arguments.

Currently displaying 161 – 174 of 174

Previous Page 9