On the smallest pseudopower
One of the oldest problems in analytic number theory consists of counting points with integer coordinates in the d-dimensional ball. It is very easy to find a main term for the counting function, but the size of the error term is difficult to estimate (...).
Consider two families of hyperelliptic curves (over ℚ), and , and their respective Jacobians , . We give a partial characterization of the torsion part of and . More precisely, we show that the only prime factors of the orders of such groups are 2 and prime divisors of n (we also give upper bounds for the exponents). Moreover, we give a complete description of the torsion part of . Namely, we show that . In addition, we characterize the torsion parts of , where p is an odd prime, and...
In this paper, we are interested in exploring the cancellation of Hecke eigenvalues twisted with an exponential sums whose amplitude is √n at prime arguments.