Displaying 81 – 100 of 159

Showing per page

On the Brun-Titchmarsh theorem

James Maynard (2013)

Acta Arithmetica

The Brun-Titchmarsh theorem shows that the number of primes which are less than x and congruent to a modulo q is less than (C+o(1))x/(ϕ(q)logx) for some value C depending on logx/logq. Different authors have provided different estimates for C in different ranges for logx/logq, all of which give C>2 when logx/logq is bounded. We show that one can take C=2 provided that logx/logq ≥ 8 and q is sufficiently large. Moreover, we also produce a lower bound of size x / ( q 1 / 2 ϕ ( q ) ) when logx/logq ≥ 8 and is bounded....

Pretentiousness in analytic number theory

Andrew Granville (2009)

Journal de Théorie des Nombres de Bordeaux

In this report, prepared specially for the program of the XXVième Journées Arithmétiques, we describe how, in joint work with K. Soundararajan and Antal Balog, we have developed the notion of “pretentiousness” to help us better understand several key questions in analytic number theory.

Prime constellations in triangles with binomial coefficient congruences

Larry Ericksen (2009)

Acta Mathematica Universitatis Ostraviensis

The primality of numbers, or of a number constellation, will be determined from residue solutions in the simultaneous congruence equations for binomial coefficients found in Pascal’s triangle. A prime constellation is a set of integers containing all prime numbers. By analyzing these congruences, we can verify the primality of any number. We present different arrangements of binomial coefficient elements for Pascal’s triangle, such as by the row shift method of Mann and Shanks and especially by...

Currently displaying 81 – 100 of 159