On the almost periodic behaviour of certain arithmetical convolutions
We consider the behavior of the power series as z tends to along a radius of the unit circle. If β is irrational with irrationality exponent 2 then . Also we consider the cases of higher irrationality exponent. We prove that for each δ there exist irrational numbers β such that .
Consider the power series , where α(n) is a completely additive function satisfying the condition α(p) = o(lnp) for prime numbers p. Denote by e(l/q) the root of unity . We give effective omega-estimates for when r → 1-. From them we deduce that if such a series has non-singular points on the unit circle, then it is a zero function.
Let . We prove that for each root of unity there is an a > 0 such that as r → 1-. For roots of unity e(l/q) with q ≤ 100 we prove that these omega-estimates are true with a = 1/2. From omega-estimates for (z) we obtain omega-estimates for some finite sums.
Let H(n) = σ(ϕ(n))/ϕ(σ(n)), where ϕ(n) is Euler's function and σ(n) stands for the sum of the positive divisors of n. We obtain the maximal and minimal orders of H(n) as well as its average order, and we also prove two density theorems. In particular, we answer a question raised by Golomb.
Given an integer base and a completely -additive arithmetic function taking integer values, we deduce an asymptotic expression for the counting functionunder a mild restriction on the values of . When , the base sum of digits function, the integers counted by are the so-called base Niven numbers, and our result provides a generalization of the asymptotic known in that case.