Das Verhalten multiplikativer Funktionen auf gewissen Zahlenfolgen.
A classical result in number theory is Dirichlet’s theorem on the density of primes in an arithmetic progression. We prove a similar result for numbers with exactly prime factors for . Building upon a proof by E. M. Wright in 1954, we compute the natural density of such numbers where each prime satisfies a congruence condition. As an application, we obtain the density of squarefree with prime factors such that a fixed quadratic equation has exactly solutions modulo .
La somme des puissances des inverses de , désignant le nombre de nombres premiers n’excédant pas , a fait l’objet de nombreux travaux. Nous généralisons, dans cet article, les formules asymptotiques obtenues par ces auteurs à toute une classe de fonctions arithmétiques.
We study tails of prime counting functions. Our approach leads to representations with a main term and an error term for the asymptotic size of each tail. It is further shown that the main term is of a specific shape and can be written discretely as a sum involving probabilities of certain events belonging to a perturbed binomial distribution. The limitations of the error term in our representation give us equivalent conditions for various forms of the Riemann hypothesis, for classical type zero-free...