Majorations de la fonction sommatoire de la fonction de Möbius
After Landau’s famous work, many authors contributed to some mean values connected with the Dedekind zetafunction. In this paper, we are interested in the integral power sums of the coefficients of the Dedekind zeta function of a non-normal cubic extension K 3/ℚ, i.e. , where M(m) denotes the number of integral ideals of the field K 3 of norm m and l ∈ ℕ. We improve the previous results for and .
Granville and Soundararajan have recently suggested that a general study of multiplicative functions could form the basis of analytic number theory without zeros of L-functions; this is the so-called pretentious view of analytic number theory. Here we study multiplicative functions which arise from the arithmetic of number fields. For each finite Galois extension K/ℚ, we construct a natural class of completely multiplicative functions whose values are dictated by Artin symbols, and we show that...