An additive problem in the theory of numbers
Let d(n) stand for the Dirichlet divisor function. We give an asymptotic formula for with the help of the circle method.
1. Introduction. Let A,B ⊂ [1,N] be sets of integers, |A|=|B|=cN. Bourgain [2] proved that A+B always contains an arithmetic progression of length . Our aim is to show that this is not very far from the best possible. Theorem 1. Let ε be a positive number. For every prime p > p₀(ε) there is a symmetric set A of residues mod p such that |A| > (1/2-ε)p and A + A contains no arithmetic progression of length (1.1). A set of residues can be used to get a set of integers in an obvious way. Observe...
Using an extension of Wright's version of the circle method, we obtain asymptotic formulae for partition ranks similar to formulae for partition cranks which where conjectured by F. Dyson and recently proved by the first author and K. Bringmann.
We count integer points on varieties given by bihomogeneous equations using the Hardy-Littlewood method. The main novelty lies in using the structure of bihomogeneous equations to obtain asymptotics in generically fewer variables than would be necessary in using the standard approach for homogeneous varieties. Also, we consider counting functions where not all the variables have to lie in intervals of the same size, which arises as a natural question in the setting of bihomogeneous varieties.