Ternary additive problems of Waring's type.
We give non-trivial upper bounds for the number of integral solutions, of given size, of a system of two quadratic form equations in five variables.
Suppose that are nonzero real numbers, not all negative, , is a well-spaced set, and the ratio is algebraic and irrational. Denote by the number of with such that the inequality has no solution in primes , , , . We show that for any .
1. Introduction. A positive number which is a sum of two odd primes is called a Goldbach number. Let E(x) denote the number of even numbers not exceeding x which cannot be written as a sum of two odd primes. Then the Goldbach conjecture is equivalent to proving that E(x) = 2 for every x ≥ 4. E(x) is usually called the exceptional set of Goldbach numbers. In [8] H. L. Montgomery and R. C. Vaughan proved that for some positive constant Δ > 0. In this paper we prove the following result. Theorem....
A new method for counting primes in a Beatty sequence is proposed, and it is shown that an asymptotic formula can be obtained for the number of such primes in a short interval.
We prove in this article that almost all large integers have a representation as the sum of a cube, a biquadrate, ..., and a tenth power.
We study the sum τ of divisors of the quadratic form m₁² + m₂² + m₃². Let . We obtain the asymptotic formula S₃(X) = C₁X³logX + C₂X³ + O(X²log⁷X), where C₁,C₂ are two constants. This improves upon the error term obtained by Guo and Zhai (2012).
For a large odd integer N and a positive integer r, define b = (b₁,b₂,b₃) and It is known that . Let ε > 0 be arbitrary and . We prove that for all positive integers r ≤ R, with at most exceptions, the Diophantine equation ⎧N = p₁+p₂+p₃, ⎨ j = 1,2,3,⎩ with prime variables is solvable whenever b ∈ (N,r), where A > 0 is arbitrary.
Let be an additive form of degree with prime variables . Suppose that has real coefficients with at least one ratio algebraic and irrational. If s is large enough then takes values close to almost all members of any well-spaced sequence. This complements earlier work of Brüdern, Cook and Perelli (linear forms) and Cook and Fox (quadratic forms). The result is based on Hua’s Lemma and, for , Heath-Brown’s improvement on Hua’s Lemma.