Sur les entiers n pour lesquels il y a beaucoup de groupes abéliens d'ordre n
Soit le nombre de groupes abéliens d’ordre . Pour étudier les grandes valeurs prises par , on définit, comme l’a fait Ramanujan pour le nombre de diviseurs de , les nombres -hautement composés et -hautement composés supérieurs. Pour calculer ces derniers nombres, on détermine les sommets de l’enveloppe inférieure convexe de la fonction où est le nombre de partitions de . Sous l’hypothèse de Riemann, on donne un développement asymptotique de l’ordre maximum de la fonction .