Identically distributed pairs of partition statistics.
Increasing integer sequences include many instances of interesting sequences and combinatorial structures, ranging from tournaments to addition chains, from permutations to sequences having the Goldbach property that any integer greater than 1 can be obtained as the sum of two elements in the sequence. The paper introduces and compares several of these classes of sequences, discussing recurrence relations, enumerative problems and questions concerning shortest sequences.
In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of -gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a -gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.
In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of 2D-gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a 2D-gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.
∗ This research is partially supported by the Bulgarian National Science Fund under contract MM-403/9We review the existing estimates for the number of integer points close to a smooth curve and improve on some of these.