Schur's determinants and partition theorems.
Page 1 Next
Ismail, Mourad E.H., Prodinger, Helmut, Stanton, Dennis (2000)
Séminaire Lotharingien de Combinatoire [electronic only]
George E. Andrews, Frank G. Garvan, Jie Liang (2013)
Acta Arithmetica
Let spt(n) denote the total number of appearances of the smallest parts in all the partitions of n. Recently, we found new combinatorial interpretations of congruences for the spt-function modulo 5 and 7. These interpretations were in terms of a restricted set of weighted vector partitions which we call S-partitions. We prove that the number of self-conjugate S-partitions, counted with a certain weight, is related to the coefficients of a certain mock theta function studied by the first author,...
H.A. Pogorzelski (1977)
Journal für die reine und angewandte Mathematik
Heekyoung Hahn (2003)
Acta Arithmetica
Shaun Cooper (2010)
Acta Arithmetica
Ben Saïd, J.-N. Nicolas (2003)
Acta Arithmetica
Baccar, N., Zekraoui, A. (2010)
Journal of Integer Sequences [electronic only]
R. Cook (1973)
Acta Arithmetica
R. Cook (1974)
Acta Arithmetica
Driss Essouabri (1997)
Annales de l'institut Fourier
Soit un polynôme. On appelle série de Dirichlet associée à la fonction : . Dans cet article nous étudions l’existence et les propriétés du prolongement méromorphe d’une telle série sous l’hypothèse qu’il existe tel que : i) quand et et ii) où . Cette hypothèse est probablement optimale et en tout cas contient strictement toutes les classes de polynômes déjà traitées antérieurement. Sous cette hypothèse nos principaux résultats sont : l’existence du prolongement méromorphe au plan...
Koichi Kawada, Trevor D. Wooley (2002)
Acta Arithmetica
Hongze Li (2001)
Acta Arithmetica
Ming-Chit Liu, Kai-Man Tsang (1991)
Monatshefte für Mathematik
Jianya Liu, Kai-Man Tsang (2005)
Acta Arithmetica
Haigang Zhou, Tianze Wang (2007)
Acta Arithmetica
Andreas Strömbergsson, Akshay Venkatesh (2005)
Acta Arithmetica
Christopher M. Skinner (1996)
Acta Arithmetica
Vsevolod F. Lev, Rom Pinchasi (2014)
Acta Arithmetica
We show that if A and B are finite sets of real numbers, then the number of triples (a,b,c) ∈ A × B × (A ∪ B) with a + b = 2c is at most (0.15+o(1))(|A|+|B|)² as |A| + |B| → ∞. As a corollary, if A is antisymmetric (that is, A ∩ (-A) = ∅), then there are at most (0.3+o(1))|A|² triples (a,b,c) with a,b,c ∈ A and a - b = 2c. In the general case where A is not necessarily antisymmetric, we show that the number of triples (a,b,c) with a,b,c ∈ A and a - b = 2c is at most (0.5+o(1))|A|². These estimates...
Akio Fujii (1985)
Banach Center Publications
Keister, Derrick M., Sellers, James A., Vary, Robert G. (2009)
Integers
Page 1 Next