Displaying 41 – 60 of 219

Showing per page

On Hilbert’s solution of Waring’s problem

Paul Pollack (2011)

Open Mathematics

In 1909, Hilbert proved that for each fixed k, there is a number g with the following property: Every integer N ≥ 0 has a representation in the form N = x 1k + x 2k + … + x gk, where the x i are nonnegative integers. This resolved a conjecture of Edward Waring from 1770. Hilbert’s proof is somewhat unsatisfying, in that no method is given for finding a value of g corresponding to a given k. In his doctoral thesis, Rieger showed that by a suitable modification of Hilbert’s proof, one can give explicit...

On integer points in polygons

Maxim Skriganov (1993)

Annales de l'institut Fourier

The phenomenon of anomaly small error terms in the lattice point problem is considered in detail in two dimensions. For irrational polygons the errors are expressed in terms of diophantine properties of the side slopes. As a result, for the t -dilatation, t , of certain classes of irrational polygons the error terms are bounded as n q t with some q > 0 , or as t ϵ with arbitrarily small ϵ > 0 .

On Linnik's theorem on Goldbach numbers in short intervals and related problems

Alessandro Languasco, Alberto Perelli (1994)

Annales de l'institut Fourier

Linnik proved, assuming the Riemann Hypothesis, that for any ϵ > 0 , the interval [ N , N + log 3 + ϵ N ] contains a number which is the sum of two primes, provided that N is sufficiently large. This has subsequently been improved to the same assertion being valid for the smaller gap C log 2 N , the added new ingredient being Selberg’s estimate for the mean-square of primes in short intervals. Here we give another proof of this sharper result which avoids the use of Selberg’s estimate and is therefore more in the spirit of Linnik’s...

Currently displaying 41 – 60 of 219