Displaying 661 – 680 of 1124

Showing per page

Overpartition pairs

Jeremy Lovejoy (2006)

Annales de l’institut Fourier

An overpartition pair is a combinatorial object associated with the q -Gauss identity and the 1 ψ 1 summation. In this paper, we prove identities for certain restricted overpartition pairs using Andrews’ theory of recurrences for well-poised basic hypergeometric series and the theory of Bailey chains.

Partitions sans petites parts

Elie Mosaki, Jean-Louis Nicolas, András Sárkőzy (2004)

Journal de Théorie des Nombres de Bordeaux

On désigne par r ( n , m ) le nombre de partitions de l’entier n en parts supérieures ou égales à m . En partant de l’estimation asymptotique de r ( n , m ) exprimée à l’aide d’un paramètre σ défini implicitement en fonction de n et m , nous éliminons ce paramètre en utilisant la formule sommatoire d’Euler-Maclaurin, pour obtenir un développement asymptotique de r ( n , m ) valable pour n + , et 1 m Γ n , Γ étant un réel quelconque.

Currently displaying 661 – 680 of 1124