Displaying 41 – 60 of 173

Showing per page

Galois structure of ideals in wildly ramified abelian p -extensions of a p -adic field, and some applications

Nigel P. Byott (1997)

Journal de théorie des nombres de Bordeaux

Let K be a finite extension of p with ramification index e , and let L / K be a finite abelian p -extension with Galois group Γ and ramification index p n . We give a criterion in terms of the ramification numbers t i for a fractional ideal 𝔓 h of the valuation ring S of L not to be free over its associated order 𝔄 ( K Γ ; 𝔓 h ) . In particular, if t n - [ t n / p ] < p n - 1 e then the inverse different can be free over its associated order only when t i - 1 (mod p n ) for all i . We give three consequences of this. Firstly, if 𝔄 ( K Γ ; S ) is a Hopf order and S is 𝔄 ( K Γ ; S ) -Galois...

Currently displaying 41 – 60 of 173