Displaying 41 – 60 of 74

Showing per page

Poids des duaux des codes BCH de distance prescrite 2 a + 1 et sommes exponentielles

Éric Férard (2002)

Bulletin de la Société Mathématique de France

Soit n un entier pair. On considère un code BCH binaire C n de longueur 2 n - 1 et de distance prescrite 2 a + 1 avec a 3 . Le poids d’un mot non nul du dual de  C n peut s’exprimer en fonction d’une somme exponentielle. Nous montrerons que cette somme n’atteint pas la borne de Weil et nous proposerons une amélioration de celle-ci. En conséquence, nous obtiendrons une amélioration de la borne de Carlitz-Uchiyama sur le poids des mots du dual de C n .

Power-moments of SL 3 ( ) Kloosterman sums

Goran Djanković (2013)

Czechoslovak Mathematical Journal

Classical Kloosterman sums have a prominent role in the study of automorphic forms on GL 2 and further they have numerous applications in analytic number theory. In recent years, various problems in analytic theory of automorphic forms on GL 3 have been considered, in which analogous GL 3 -Kloosterman sums (related to the corresponding Bruhat decomposition) appear. In this note we investigate the first four power-moments of the Kloosterman sums associated with the group SL 3 ( ) . We give formulas for the...

Proof of a conjectured three-valued family of Weil sums of binomials

Daniel J. Katz, Philippe Langevin (2015)

Acta Arithmetica

We consider Weil sums of binomials of the form W F , d ( a ) = x F ψ ( x d - a x ) , where F is a finite field, ψ: F → ℂ is the canonical additive character, g c d ( d , | F × | ) = 1 , and a F × . If we fix F and d, and examine the values of W F , d ( a ) as a runs through F × , we always obtain at least three distinct values unless d is degenerate (a power of the characteristic of F modulo | F × | ). Choices of F and d for which we obtain only three values are quite rare and desirable in a wide variety of applications. We show that if F is a field of order 3ⁿ with n odd, and d = 3 r + 2 with...

Currently displaying 41 – 60 of 74