Displaying 261 – 280 of 497

Showing per page

On some equations over finite fields

Ioulia Baoulina (2005)

Journal de Théorie des Nombres de Bordeaux

In this paper, following L. Carlitz we consider some special equations of n variables over the finite field of q elements. We obtain explicit formulas for the number of solutions of these equations, under a certain restriction on n and q .

On some subgroups of the multiplicative group of finite rings

José Felipe Voloch (2004)

Journal de Théorie des Nombres de Bordeaux

Let S be a subset of F q , the field of q elements and h F q [ x ] a polynomial of degree d > 1 with no roots in S . Consider the group generated by the image of { x - s s S } in the group of units of the ring F q [ x ] / ( h ) . In this paper we present a number of lower bounds for the size of this group. Our main motivation is an application to the recent polynomial time primality testing algorithm [AKS]. The bounds have also applications to graph theory and to the bounding of the number of rational points on abelian covers of the projective...

On sums and products in a field

Guang-Liang Zhou, Zhi-Wei Sun (2022)

Czechoslovak Mathematical Journal

We study sums and products in a field. Let F be a field with ch ( F ) 2 , where ch ( F ) is the characteristic of F . For any integer k 4 , we show that any x F can be written as a 1 + + a k with a 1 , , a k F and a 1 a k = 1 , and that for any α F { 0 } we can write every x F as a 1 a k with a 1 , , a k F and a 1 + + a k = α . We also prove that for any x F and k { 2 , 3 , } there are a 1 , , a 2 k F such that a 1 + + a 2 k = x = a 1 a 2 k .

On the Asymptotic Behavior of the Ratio between the Numbers of Binary Primitive and Irreducible Polynomials

Borissov, Yuri, Ho Lee, Moon, Nikova, Svetla (2008)

Serdica Journal of Computing

This work was presented in part at the 8th International Conference on Finite Fields and Applications Fq^8 , Melbourne, Australia, 9-13 July, 2007.In this paper, we study the ratio θ(n) = λ2 (n) / ψ2 (n), where λ2 (n) is the number of primitive polynomials and ψ2 (n) is the number of irreducible polynomials in GF (2)[x] of degree n. Let n = ∏ pi^ri, i=1,..l be the prime factorization of n. We show that, for fixed l and ri , θ(n) is close to 1 and θ(2n) is not less than 2/3 for sufficiently large...

On the Carlitz problem on the number of solutions to some special equations over finite fields

Ioulia N. Baoulina (2011)

Journal de Théorie des Nombres de Bordeaux

We consider an equation of the type a 1 x 1 2 + + a n x n 2 = b x 1 x n over the finite field 𝔽 q = 𝔽 p s . Carlitz obtained formulas for the number of solutions to this equation when n = 3 and when n = 4 and q 3 ( mod 4 ) . In our earlier papers, we found formulas for the number of solutions when d = gcd ( n - 2 , ( q - 1 ) / 2 ) = 1 or 2 or 4 ; and when d > 1 and - 1 is a power of p modulo  2 d . In this paper, we obtain formulas for the number of solutions when d = 2 t , t 3 , p 3 or 5 ( mod 8 ) or p 9 ( mod 16 ) . For general case, we derive lower bounds for the number of solutions.

On the distribution of sparse sequences in prime fields and applications

Víctor Cuauhtemoc García (2013)

Journal de Théorie des Nombres de Bordeaux

In the present paper we investigate distributional properties of sparse sequences modulo almost all prime numbers. We obtain new results for a wide class of sparse sequences which in particular find applications on additive problems and the discrete Littlewood problem related to lower bound estimates of the L 1 -norm of trigonometric sums.

On the joint 2-adic complexity of binary multisequences

Lu Zhao, Qiao-Yan Wen (2012)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Joint 2-adic complexity is a new important index of the cryptographic security for multisequences. In this paper, we extend the usual Fourier transform to the case of multisequences and derive an upper bound for the joint 2-adic complexity. Furthermore, for the multisequences with pn-period, we discuss the relation between sequences and their Fourier coefficients. Based on the relation, we determine a lower bound for the number of multisequences with given joint 2-adic complexity.

Currently displaying 261 – 280 of 497