Rechnen in endlichen Körpern (Beispiele elementarer Zahlentheorie).
Introduction. Soit q une puissance d’un nombre premier p et soit le corps fini à q éléments. Une certaine analogie entre l’arithmétique de l’anneau ℤ des entiers rationnels et celle de l’anneau a conduit à étendre à de nombreuses questions de l’arithmétique classique. L’équirépartition modulo 1 est une de ces questions. Le corps des nombres réels est alors remplacé par le corps des séries de Laurent formelles, complété du corps des fractions rationnelles pour la valuation à l’infini et...
Let denote the polynomial ring over , the finite field of elements. Suppose the characteristic of is not or . We prove that there exist infinitely many such that the set contains a Sidon set which is an additive basis of order .
We are concerned with solving polynomial equations over rings. More precisely, given a commutative domain A with 1 and a polynomial equation antn + ...+ a0 = 0 with coefficients ai in A, our problem is to find its roots in A.We show that when A = B[x] is a polynomial ring, our problem can be reduced to solving a finite sequence of polynomial equations over B. As an application of this reduction, we obtain a finite algorithm for solving a polynomial equation over A when A is F[x1, ..., xN] or F(x1,...
In this article we extend the algebraic theory of polynomial rings, formalized in Mizar [1], based on [2], [3]. After introducing constant and monic polynomials we present the canonical embedding of R into R[X] and deal with both unit and irreducible elements. We also define polynomial GCDs and show that for fields F and irreducible polynomials p the field F[X]/ is isomorphic to the field of polynomials with degree smaller than the one of p.